
Программирование на JS

Второй модуль

Второе занятие

Продолжаем работать с моделью документа в браузере (DOM –

Document Object Model ниже я буду использовать эту

аббревиатуру для сокращения).

Кроме добавления элементов в DOM, мы можем их оттуда удалять

с помощью метода removeChild. Метод removeChild возвращает

значение удаленного узла DOM

Для того чтобы удалить все параграфы, мы должны вызвать

removeChild в цикле while. Этот цикл читается так: пока в

коллекции p есть элементы, удаляем первый из них. Дело в

том, что при удалении элемента индексы в коллекции

автоматически сдвигаются, поэтому цикл for нам не подойдет.

С помощью метода cloneNode мы можем копировать узлы DOM.

Этот метод принимает один параметр – true или false, который

определяет глубину копирования элемента: true – с

содержимом, false – без. Обернем наши параграфы в div

А теперь с false

Во втором случае div скопировался без содержимого.

Рассмотренные методы вставки и удаления работают всегда и

везде. Сравнительно недавно в стандарте появились методы,

которые позволяют вставить что угодно и куда угодно.

Синтаксис:

• node.append(...nodes) – вставляет nodes в конец node,

• node.prepend(...nodes) – вставляет nodes в начало node,

• node.after(...nodes) – вставляет nodes после узла node,

• node.before(...nodes) – вставляет nodes перед

узлом node,

• node.replaceWith(...nodes)– вставляет nodes вместо node.

Вот ссылка на поддержку браузерами данных методов:

https://caniuse.com/#search=append

Рассмотрим их по очереди.

https://caniuse.com/#search=append

Я немного изменил стили документа

Проиллюстрируем работу этих методов

Метод append для вставки текста

Метод after

Метод append для вставки узла, он работает аналогично

appendChild

Метод prepend

Метод replaceWith заменяет один тег другим.

Также мы можем вставлять несколько узлов с помощью этих

методов.

Я использовал новый оператор ..., этот оператор называется

spread или оператор деструктуризации.

Деструктуризация (destructuring assignment) – это особый

синтаксис присваивания, при котором можно присвоить массив

или объект сразу нескольким переменным, разбив его на части.

Поэкспериментируйте добавление массива узлов с всеми

методами.

Еще один метод записи элемент innerHTML. Этот свойство есть

у каждого элемента, с помощью него мы можем полностью

переписать всё содержимое тега.

Я использовал конкатенацию строк и добавил в поле innerHTML

новый тег, не удаляя содержимого.

innerHTML является очень мощным средством изменения DOM,

поэтому его нужно использовать с осторожностью.

У текстовых элементов с помощью поля textContent мы можем

менять текстовый контент.

textContent меняет только текст(!).

В предыдущем занятии мы изменяли css-свойства с помощью

element.style.property. Но если мы изменяем несколько

свойств наш код начинает линейно возрастать. Это не очень

хорошо. У этой проблемы есть решение element.style.cssText

Обратите внимание на синтаксис написания стилей. После

каждой строки мы ставим обратный слеш, а в конце на новой(!)

строчке ставим закрывающую кавычку.

В работе с документом нам может понадобиться чтение стилей

из тега style, расположенного в теге head. Например, если

цвет текста красный, то поменяй его на синий и наоборот.

Но в консоли пусто!

Для этого существует метод getComputedStyle

Изменим цвет параграфов на красный в теге head

Теперь в консоли мы увидим красный в палитре rgb

Если цвет параграфа красный, то изменим его на синий. Так

как getComputedStyle является неизменяемым свойством, то

меняем цвет параграфа с помощью style.

Последнее, что мы рассмотрим в рамках темы «работа с

элементами».

Атрибуты тегов

Элементам DOM, с другой стороны, соответствуют HTML-теги, у

которых есть текстовые атрибуты.

Конечно, здесь речь именно об узлах-элементах, не о

текстовых узлах или комментариях.

Доступ к атрибутам осуществляется при помощи стандартных

методов:

• elem.hasAttribute(name) – проверяет наличие атрибута

• elem.getAttribute(name) – получает значение атрибута

• elem.setAttribute(name, value) – устанавливает атрибут

• elem.removeAttribute(name) – удаляет атрибут

Посмотрим на эти методы в полевых условиях

Изменим стили нашей ссылки

Наша ссылка полностью валидна

Более живой пример: ленивая загрузка изображений. Сначала

загружаем маленькую размытую картинку, а после загрузки

страницы подгружаем «хорошую».

Что такое addEventListener мы разберем позднее. Сейчас нас

интересует механизм замены атрибута:

• Проверили есть ли атрибут

• Получили его

• Изменили атрибут src

• Удалили атрибут data-src

Домашнее задание:

• Повторить весь изученный материал (на следующем

занятии будет блиц-опрос)

• Промоделировать работу методов append, prepend,

before, after и replaceWith на своих примерах

• Создать несколько ссылок и изменить у них href с

помощью setAttribute

